Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(11): e202303506, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38212242

RESUMO

ß2 -adrenergic receptor (ß2 -AR) agonists are used for the treatment of asthma and chronic obstructive pulmonary disease, but also play a role in other complex disorders including cancer, diabetes and heart diseases. As the cellular and molecular mechanisms in various cells and tissues of the ß2 -AR remain vastly elusive, we developed tools for this investigation with high temporal and spatial resolution. Several photoswitchable ß2 -AR agonists with nanomolar activity were synthesized. The most potent agonist for ß2 -AR with reasonable switching is a one-digit nanomolar active, trans-on arylazopyrazole-based adrenaline derivative and comprises valuable photopharmacological properties for further biological studies with high structural accordance to the native ligand adrenaline.


Assuntos
Adrenérgicos , Agonistas de Receptores Adrenérgicos beta 2 , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Sondas Moleculares , Receptores Adrenérgicos beta 2/química , Epinefrina/farmacologia , Transdução de Sinais
2.
Angew Chem Int Ed Engl ; 62(49): e202306176, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37269130

RESUMO

The cannabinoid 2 receptor (CB2 R) has high therapeutic potential for multiple pathogenic processes, such as neuroinflammation. Pathway-selective ligands are needed to overcome the lack of clinical success and to elucidate correlations between pathways and their respective therapeutic effects. Herein, we report the design and synthesis of a photoswitchable scaffold based on the privileged structure of benzimidazole and its application as a functionally selective CB2 R "efficacy-switch". Benzimidazole azo-arenes offer huge potential for the broad extension of photopharmacology to a wide range of optically addressable biological targets. We used this scaffold to develop compound 10 d, a "trans-on" agonist, which serves as a molecular probe to study the ß-arrestin2 (ßarr2) pathway at CB2 R. ßΑrr2 bias was observed in CB2 R internalization and ßarr2 recruitment, while no activation occurred when looking at Gα16 or mini-Gαi . Overall, compound 10 d is the first light-dependent functionally selective agonist to investigate the complex mechanisms of CB2 R-ßarr2 dependent endocytosis.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , beta-Arrestina 2/metabolismo , Canabinoides/farmacologia , Benzimidazóis/química
3.
ACS Chem Neurosci ; 13(16): 2410-2435, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35881914

RESUMO

Activation of the human cannabinoid receptor type 1 (hCB1R) with high spatiotemporal control is useful to study processes involved in different pathologies related to nociception, metabolic alterations, and neurological disorders. To synthesize new agonist ligands for hCB1R, we have designed different classes of photoswitchable molecules based on an indole core. The modifications made to the central core have allowed us to understand the molecular characteristics necessary to design an agonist with optimal pharmacological properties. Compound 27a shows high affinity for CB1R (Ki (cis-form) = 0.18 µM), with a marked difference in affinity with respect to its inactive "trans-off" form (CB1R Ki trans/cis ratio = 5.4). The novel compounds were evaluated by radioligand binding studies, receptor internalization, sensor receptor activation (GRABeCB2.0), Western blots for analysis of ERK1/2 activation, NanoBiT ßarr2 recruitment, and calcium mobilization assays, respectively. The data show that the novel agonist 27a is a candidate for studying the optical modulation of cannabinoid receptors (CBRs), serving as a new molecular tool for investigating the involvement of hCB1R in disorders associated with the endocannabinoid system.


Assuntos
Amidas , Hexaclorobenzeno , Endocanabinoides , Humanos , Indóis/química , Receptor CB1 de Canabinoide , Receptores de Canabinoides
4.
Arch Toxicol ; 96(8): 2341-2360, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579693

RESUMO

Remdesivir is a prodrug of a nucleoside analog and the first antiviral therapeutic approved for coronavirus disease. Recent cardiac safety concerns and reports on remdesivir-related acute kidney injury call for a better characterization of remdesivir toxicity and understanding of the underlying mechanisms. Here, we performed an in vitro toxicity assessment of remdesivir around clinically relevant concentrations (Cmax 9 µM) using H9c2 rat cardiomyoblasts, neonatal mouse cardiomyocytes (NMCM), rat NRK-52E and human RPTEC/TERT1 cells as cell models for the assessment of cardiotoxicity or nephrotoxicity, respectively. Due to the known potential of nucleoside analogs for the induction of mitochondrial toxicity, we assessed mitochondrial function in response to remdesivir treatment, early proteomic changes in NMCM and RPTEC/TERT1 cells and the contractile function of NMCM. Short-term treatments (24 h) of H9c2 and NRK-52E cells with remdesivir adversely affected cell viability by inhibition of proliferation as determined by significantly decreased 3H-thymidine uptake. Mitochondrial toxicity of remdesivir (1.6-3.1 µM) in cardiac cells was evident by a significant decrease in oxygen consumption, a collapse of mitochondrial membrane potential and an increase in lactate secretion after a 24-48-h treatment. This was supported by early proteomic changes of respiratory chain proteins and intermediate filaments that are typically involved in mitochondrial reorganization. Functionally, an impedance-based analysis showed that remdesivir (6.25 µM) affected the beat rate and contractility of NMCM. In conclusion, we identified adverse effects of remdesivir in cardiac and kidney cells at clinically relevant concentrations, suggesting a careful evaluation of therapeutic use in patients at risk for cardiovascular or kidney disease.


Assuntos
Antivirais , Proteômica , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Animais , Antivirais/toxicidade , Proliferação de Células , Humanos , Rim , Camundongos , Ratos
5.
ACS Chem Neurosci ; 12(9): 1632-1647, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33856764

RESUMO

Human cannabinoid receptor type 1 (hCB1R) plays important roles in the regulation of appetite and development of addictive behaviors. Herein, we describe the design, synthesis, photocharacterization, molecular docking, and in vitro characterization of "photo-rimonabant", i.e., azo-derivatives of the selective hCB1R antagonist SR1411716A (rimonabant). By applying azo-extension strategies, we yielded compound 16a, which shows marked affinity for CB1R (Ki (cis form) = 29 nM), whose potency increases by illumination with ultraviolet light (CB1R Kitrans/cis ratio = 15.3). Through radioligand binding, calcium mobilization, and cell luminescence assays, we established that 16a is highly selective for hCB1R over hCB2R. These selective antagonists can be valuable molecular tools for optical modulation of CBRs and better understanding of disorders associated with the endocannabinoid system.


Assuntos
Antagonistas de Receptores de Canabinoides , Receptor CB1 de Canabinoide , Antagonistas de Receptores de Canabinoides/farmacologia , Humanos , Simulação de Acoplamento Molecular , Rimonabanto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...